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Abstract In this paper we present a multilayer particle-deposition model on a random tree.
We derive the time-dependent densities of the first and second layer analytically and show
that for all trees the limiting density of the first layer exceeds the density in the second
layer. We also provide a procedure to calculate higher-layer densities and prove that random
trees have a higher limiting density in the first layer than regular trees. Finally, we compare
densities between the first and second layer and between regular and random trees.

Keywords Car parking problem · Random sequential adsorption · Sequential frequency
assignment process · Particle systems

1 Introduction

Parking models with screening were first studied in the field of ballistic particle deposition,
see for example [1]. In those models particles are moving towards a substrate or a fiber until
they encounter a previously deposited particle or the substrate itself. A particle always tries
to park on a layer as low as possible but due to “screening” the particle cannot pass formerly
deposited particles. In our model the screening rule makes every particle park in the highest
layer possible where it is supported by a particle in the layer below (see Fig. 1). Models of
this type provide an interesting class of non-equilibrium systems; physically they describe
the addition of particles or atoms to surfaces in regimes where diffusion on the substrate
does not play a role on the experimental time-scale. This “Tetris” model is very different
from the so-called Sequential Frequency Assignment Process (SFAP) in which particles
(assignments) can skip particles on their way down [2]. In that model particles are deposited
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Fig. 1 Example of a realization of the particle deposition process with screening on a one-dimensional lattice

in the lowest layer (frequency) possible. It has been found for the SFAP that there is an
increasing limiting density of particles in higher layers due to boundary and other effects
[2, 3]. In this paper we will show analytically that in the model with screening the opposite
is true. The density in the first layer turns out to be higher than in the second layer. We
conjecture that the same applies to the other layers.

Also, we generalize the model on the one-dimensional lattice to a model on regular and
random trees. Recently, several random particle-deposition tree models have been studied
in [4–6]. However, to our knowledge this is the first time a multilayer random tree model is
treated.

2 Layer Densities

2.1 The Dynamics

The precise definition of the model is as follows. We consider a random tree with vertices
i ∈ V and degree at the site i given by Di . We choose Di to be independent random variables
with the same distribution Q given by

Q(Di = k) = ak (2.1)

on the integers starting from 2. The latter requirement ensures that we have no open ends
with probability one.

We denote the generating function of the distribution by

G(s) =
∞∑

k=2

aks
k (2.2)

We will denote the expected value with respect to this probability distribution by the
same symbol Q. We fix a realization of the random tree, and denote by V its vertex set.
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In our deposition model particles will be dropped at sites i according to Poisson processes
with rate 1, independently over the sites. When a particle arrives at site i it will be deposited
at height max{hj ,dist(j, i) ≤ 1} + 1 where hj is the maximum height at which a particle is
present at site j . So, the resulting configurations at any given time are such that there can
be no neighboring particles in the same layer, and any deposited particle is supported by a
particle directly below it or at a horizontal distance one below it (see Fig. 1).

In the first part of the paper we will be interested in the behavior of particle configurations
arising from particle deposition in the first two layers, that is we consider the marginal of an
infinite-layer particle model on the first two layers. This will be generalized to higher layers
later. To describe the behavior on the first two layers we consider (suitably coded) occupation
numbers m = (m(i))i∈V ∈ � = {0,1,2,3}V . Here the spin m(i) denotes the joint occupation
numbers at vertex i at height 1 and 2. It is useful for short notation to interpret the occupation
numbers at various heights as binary digits and write ordinary natural numbers. That is we
write

m(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if vertex i is vacant in the first and second line

1 if vertex i is occupied in the first but not in the second line

2 if vertex i is occupied in the second but not in the first line

3 if vertex i is occupied in the first and in the second line

(2.3)

so that m(i) ∈ {0,1,2,3}.
Now we can describe the dynamics of the joint process of particle occupations in the

first two layers and the total number of particles which have arrived by the following gen-
erator. Note that it is really necessary to consider also particle arrivals beyond the first two
layers because of the screening effects higher-layer particles might have on lower layers. It
is furthermore necessary to distinguish two sorts of particle arrivals: those which change the
lower layers and those which leave the lower layers unchanged. Let F be a joint function of
particle occupations in the first two layers and particle numbers. Then the generator of our
process reads

LF(m,N) =
∑

k∈V

( ∑

s=1,2,3,4

F(ms,k,Nk)rk(s;Mk)

+
(

1 −
∑

s=1,2,3,4

rk(s;Mk)

)
F(m,Nk) − F(m,N)

)
(2.4)

with

Nk(i) =
{

N(k) + 1 if k = i

N(k) if k �= i
(2.5)

and with

ms,k(i) =
{

s if k = i

m(i) if k �= i
(2.6)

where Mk := (N(l),m(l))l∈{k}∪C(k) where C(k) := {i : dist(i, k) = 1} is the neighborhood of
vertex k.



420 S.R. Fleurke, C. Külske

Fig. 2 Neighborhood configurations of a vertex that allow the mt transitions 0 → 1, 1 → 2 and 1 → 3
respectively. In this example the central vertex has three neighbors. The states are denoted with the notation
(Nt ,mt ), e.g. (1,1) means that one particle arrived and that it was deposited on the first layer. In order to
have a transition from 0 to 1 every vertex in the neighborhood has to be totally empty (Nt = 0). To get a
transition from 0 to 2 the vertex itself must be empty, but at least one of the neighbors has to have one particle
in total that lies on the first layer. Finally, to have a transition 1 to 3 the vertex has to have exactly one particle
located on the first layer, while the neighbors should be empty

Looking at test functions F which do not depend on the m-variable we see that this gener-
ator will give rise to Poisson-processes Nt(k), independently over the sites k. To understand
the form of the generator describing the particle fillings which are encoded by the m-variable
we note that the first term in the generator describes the events when the addition of a new
particle also changes the configuration in one of the first two layers. The second term in the
generator describes the events when the first two layers are already full or screened, and a
further adding of a particle does not change its filling.

The rates are either equal to zero or one. They are 1 precisely in the following cases (see
also Fig. 2) listed below.

1. 0 �→ 1 Adding a particle in the first line at vertex i. We have

r(1; {N(i) = 0} ∩ {∀j∈C(i) : N(j) = 0}) = 1 (2.7)

Indeed, this occurs when the site and all its neighbors are empty in all layers.
2. 0 �→ 2 Adding a particle in the second line at i while the first line was empty at the site

r(2; {N(i) = 0,∃J ⊂ C(i) : ∀j ∈ J : m(j) = 1,N(j) = 1,∀k ∈ C(i)\J : N(k) = 0}) = 1
(2.8)

It is only possible to reach the state m(i) = 2 when there is a non-empty set of neigh-
boring sites which have a particle at layer 1 and where no more than one particle has
been dropped, while in all other neighboring sites no particles have been dropped.

3. 1 �→ 3 Adding a particle in the second line while the first line was full at the site

r(3; {m(i) = 1,N(i) = 1} ∩ {∀j∈C(i) : N(j) = 0}) = 1 (2.9)

To get into state m(i) = 3 there must be one particle in vertex i and all neighboring sites
should be empty to avoid screening.

All other transitions are impossible.

This generator defines a time-homogeneous Markov jump process on the infinite graph
by standard theory [7] such that (2.4) d

dt
|t=0E

m,NF (mt ,Nt ) = LF(m,N).
Here Em,N denotes the expected value with respect to the process, started in the initial

configuration (m,N) = (m(i),N(i))i∈V at t = 0.
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We underline that we consider the marginal of the first two layers of a model where
particles may pile up to arbitrarily high layers. The present model differs from the model
discussed in [3] where particles that cannot be deposited in the first or second layer are
rejected.

2.2 Regular Trees

We first consider the densities, taken at an arbitrary vertex called 0,

ρd
t (1) = Pt(m(0) = 1) + Pt(m(0) = 3)

(2.10)
ρd

t (2) = Pt(m(0) = 2) + Pt(m(0) = 3)

on the first and second layer on a regular tree with degree d ≥ 2. Having understood their
behavior on a regular tree we can derive the densities on random trees easily in Sect. 2.3.

Theorem 1 Consider the regular tree Td with degree d ≥ 2. Particles arrive at the vertices
of Td according to a Poisson process and obey the screening rules of deposition. Then the
time-dependent densities are, on the first layer

ρd
t (1) = 1 − e−(d+1)t

d + 1
(2.11)

and on the second layer

ρd
t (2) =

(
d

d − 1

)d d∑

k=0

(
d

k

)
d−k(−1)k

(d − 1)k + d + 1
− d

(d + 1)2
+ d

(d + 1)2
e−(d+1)t

−
(

d

d − 1

)d d∑

k=0

(
d

k

)
d−k(−1)k

(d − 1)k + d + 1
e−[(d−1)k+d+1]t − 1

d + 1
te−(d+1)t (2.12)

Proof In this section and the next probabilities regarding the filling in the first two layers,
but also regarding the total number of particle arrivals at a site, are introduced. It will be
necessary to keep also the latter information; looking at the first type of quantities only does
not provide a closed system of equations. Throughout the paper we use the notation

Dd
t (s) = Pt(m(0) = s)

for all s. We fix at a certain vertex 0. The surrounding vertices are numbered 1,2, . . . , d .
First we calculate the time derivative of Dd

t (1) and integrate back. Taking into account the
first and third process depicted in Fig. 2 we see that

Ḋd
t (1) = Pt(Nt (0) = 0,∀k≤dNt (k) = 0) − Pt(Nt (0) = 1, ∀k≤dNt (k) = 0)

= e−(d+1)t − te−t e−dt

= −(t − 1)e−(d+1)t (2.13)

So, now with Dd
0 (1) = 0 we find

Dd
t (1) = d

(d + 1)2
− d

(d + 1)2
e−(d+1)t + 1

d + 1
te−(d+1)t (2.14)
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We apply the same technique to find Dd
t (2)

Ḋd
t (2) =

d∑

k=1

(
d

k

)
Pt(Nt (0) = 0,∀i≤kNt (i) = 1,mt (i) = 1,∀k<j≤dNt (j) = 0)

=
d∑

k=1

(
d

k

)
Pt(∀i≤kNt (i) = 1,mt (i) = 1,∀k<j≤dNt (j) = 0|Nt(0) = 0)e−t

= e−t

d∑

k=1

(
d

k

)
[Pt(Nt (1) = 1,mt (1) = 1|Nt(0) = 0)]k[Pt(Nt (0) = 0)]d−k (2.15)

Now we need to calculate the quantity Sd
t := P d

t (Nt (1) = 1,mt (1) = 1|Nt(0) = 0). This is
done by constructing another differential equation.

Ṡd
t = Pt(Nt (1) = 0,∀i:dist(i,1)=1Nt(i) = 0|Nt(0) = 0) − Sd

t

= e−dt − Sd
t (2.16)

whose solution is

Sd
t = e−t 1 − e−(d−1)t

d − 1
(2.17)

So, we have

Ḋd
t (2) = e−t

d∑

k=1

(
d

k

)[
1

d − 1
e−t (1 − e−(d−1)t )

]k

[e−t ]d−k

= e−(d+1)t

d∑

k=1

(
d

k

)[
1 − e−(d−1)t

d − 1

]k

= e−(d+1)t

[(
1 + 1 − e−(d−1)t

d − 1

)d

− 1

]

= −e−(d+1)t + e−(d+1)t

(
d

d − 1
− 1

d − 1
e−(d−1)t

)d

= −e−(d+1)t + e−(d+1)t

d∑

k=0

(
d

k

)(
d

d − 1

)d−k( −1

d − 1

)k

e−(d−1)kt

= −e−(d+1)t +
(

d

d − 1

)d d∑

k=0

(
d

k

)
d−k(−1)ke−[(d−1)k+d+1]t (2.18)

which gives (with Dd
0 (2) = 0)

Dd
t (2) =

(
d

d − 1

)d d∑

k=0

(
d

k

)
d−k(−1)k

(d − 1)k + d + 1
− 1

d + 1

+ 1

d + 1
e−(d+1)t −

(
d

d − 1

)d d∑

k=0

(
d

k

)
d−k(−1)k

(d − 1)k + d + 1
e−[(d−1)k+d+1]t (2.19)
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Finally, for Dd
t (3) we find

Ḋd
t (3) = Pt(Nt (0) = 1,∀k≤dNt (k) = 0)

= te−(d+1)t (2.20)

so, that (with Dd
0 (3) = 0)

Dd
t (3) = 1

(d + 1)2
− 1

(d + 1)2
e−(d+1)t − 1

d + 1
te−(d+1)t (2.21)

The densities of the first and second layer follow immediately by adding Dd
t (1) and Dd

t (3)

for the first layer, and Dd
t (2) and Dd

t (3) for the second layer. �

Remark Note that for the derivation of the formula for the first layer we did not have to use
the absence of loops in a tree. Therefore, the first-layer density on a graph is the same as on
a tree, no matter whether they are regular or random.

2.3 Random Trees

Let us now consider the case of particle deposition on a random tree where the number of
neighbors of every vertex is a random number according to some G(s) = ∑∞

n=2 ans
n. We

now have the following

Theorem 2 Consider a multilayer random tree TD with generating function GT (s) =∑∞
n=2 ans

n. Particles arrive at the vertices of TD according to a Poisson process and obey
the screening rules of deposition. Then the tree-averaged time dependent densities are, on
the first layer

Qρt (1) =
∞∑

k=2

ak

(1 − e−(k+1)t )

k + 1
(2.22)

and on the second layer

Qρt (2) =
∞∑

k=2

ak

(k + 1)2
−

∞∑

k=2

(
ak

(k + 1)2
e−(k+1)t + ak

k + 1
te−(k+1)t

)
(2.23)

+
∞∑

d0=2

ad0

d0∑

k=1

(
d0

k

) k∑

i=0

(
k

i

)
(−1)i

( ∞∑

d=2

ad

d − 1

)k−i ∫ t

0
Z

i

ue
−(d0+1)udu (2.24)

where Zt := ∑∞
d=2 ade

−(d−1)t /(d − 1).

Proof First, we calculate QDt(1) and QDt(3). Notice that the derivatives of these functions
in a certain vertex 0 are not affected by the tree ensemble beyond the nearest neighbors.
Therefore, we can immediately start averaging Dt(1) and Dt(3) over Q rather than dealing
with its derivatives first. In the previous section we already found

Dd
t (1) = d

(d + 1)2
− d

(d + 1)2
e−(d+1)t + 1

d + 1
te−(d+1)t (2.25)
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where d now denotes the (random) number of nearest neighbors of the site under consider-
ation. Averaging over Q results then in

QDt(1) =
∞∑

k=2

akk

(k + 1)2
−

∞∑

k=2

(
akk

(k + 1)2
e−(k+1)t − ak

k + 1
te−(k+1)t

)
(2.26)

Similarly, we find

QDt(3) =
∞∑

k=2

ak

(k + 1)2
−

∞∑

k=2

(
ak

(k + 1)2
e−(k+1)t + ak

k + 1
te−(k+1)t

)
(2.27)

Adding these two results gives the density on the first layer. In the previous section we
already found

Ḋt (2) = e−t

d0∑

k=1

(
d0

k

)
[P dk

t (Nt (k) = 1,mt (1) = 1|Nt(0) = 0)]k[Pt(Nt (0) = 0)]d0−k (2.28)

where the number of neighbors of vertex i is denoted by di . Note that in this section the di ’s
may be different since we are treating a random tree. So, we get

Ḋt (2) = e−t

d0∑

k=1

(
d0

k

)
[Sdk

t ]k[Pt(Nt (0) = 0)]d0−k (2.29)

⇒ QḊt (2) = e−t

∞∑

d0=2

ad0

d0∑

k=1

(
d0

k

)[ ∞∑

dk=2

adk
S

dk
t

]k

[Pt(Nt (0) = 0)]d0−k (2.30)

In (2.17) we already found that S
dk
t = 1

dk−1e−t (1 − e−(dk−1)t ). So, we have

QḊt (2) =
∞∑

d0=2

ad0e
−(d0+1)t

d0∑

k=1

(
d0

k

)[ ∞∑

d=2

ad

1

d − 1
−

∞∑

d=2

ad

e−(d−1)t

d − 1

]k

=
∞∑

d0=2

ad0

d0∑

k=1

(
d0

k

) k∑

i=0

(
k

i

)
(−1)i

( ∞∑

d=2

ad

1

d − 1

)k−i

×
( ∞∑

d=2

ad

e−(d−1)t

d − 1

)i

e−(d0+1)t

=
∞∑

d0=2

ad0

d0∑

k=1

(
d0

k

) k∑

i=0

(
k

i

)
(−1)i

( ∞∑

d=2

ad

d − 1

)k−i

Z
i

t e
−(d0+1)t (2.31)

with Zt := ∑∞
d=2 ade

−(d−1)t /(d − 1). So, by integration we find

QDt(2) =
∞∑

d0=2

ad0

d0∑

k=1

(
d0

k

) k∑

i=0

(
k

i

)
(−1)i

( ∞∑

d=2

ad

1

d − 1

)k−i ∫ t

0
Z

i

ue
−(d0+1)udu (2.32)

�
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Example We would like to give an example where a closed-form solution is available which
is free of integrals and gives us the time-dependent behavior of densities in the first and
second line as sums whose main terms are exponentials in the time. Let us consider the
special case where there are only two possible numbers of neighbors a and b on the random
tree, i.e. we take G(s) = pas

a + pbs
b. We find

Qρt (1) = pa

a + 1

(
1 − e−(a+1)t

) + pb

b + 1

(
1 − e−(b+1)t

)
(2.33)

For the second layer we need to calculate the quantity Ct(n, x) := ∫ t

0 Z
n

ue
−(x+1)udu. We have

Zn
t =

[
pa

a − 1
e−(a−1)t + pb

b − 1
e−(b−1)t

]n

=
n∑

j=0

(
n

j

)(
pa

a − 1

)n−j(
pb

b − 1

)j

e−[(a−1)(n−j)+(b−1)j ]t (2.34)

and so

Ct(n, x) =
⎧
⎨

⎩

1
x+1 (1 − e−(x+1)t ) if n = 0
∑n

j=0

(
n

j

) (
pa
a−1 )n−j (

pb
b−1 )j (1−e−[(a−1)(n−j)+(b−1)j+x+1]t )
(a−1)(n−j)+(b−1)j+x+1 if n > 0

(2.35)

So, for the second layer’s density we find the closed form

Qρt (2) = pa

(
1

(a + 1)2
− e−(a+1)t

(a + 1)2
− te−(a+1)t

a + 1

)
+ pb

(
1

(b + 1)2
− e−(b+1)t

(b + 1)2
− te−(b+1)t

b + 1

)

+ pa

a∑

k=1

(
a

k

) k∑

i=0

(
k

i

)
(−1)i

(
pa

a − 1
+ pb

b − 1

)k−i

Ct (i, a)

+ pb

b∑

k=1

(
b

k

) k∑

i=0

(
k

i

)
(−1)i

(
pa

a − 1
+ pb

b − 1

)k−i

Ct (i, b) (2.36)

As an example in Fig. 3 the time development of the densities on the first two layers in the
case of a random tree where every vertex has two or four neighbors, is displayed.

2.4 Procedure to Derive Higher-Layer Densities

It is natural to ask whether the procedure we just described to obtain densities on the first
two layers can be generalized to obtain densities in a finite number of layers. To see the
issue of higher layers more clearly let us specialize from the tree to the line. In this case,
we claim that the time-dependent probabilities of the occurrence of any single-site pattern
describing occupations up to a given finite height can in principle be calculated. However,
in most cases the (probability of occurrence of a) pattern can not be calculated directly but
by a recursive algorithm which involves the computation of simpler patterns which we call
the pre-image motives.

The following procedure provides a method to find the time-dependent formula of the
proportion of any pattern on a vertex. It consists of four steps:
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Fig. 3 Comparison of the densities on the first two layers in the case of a regular tree and a random tree

1. Find the pre-image motives (the configurations from which the pattern under interest can
increase or decrease);

2. Obtain the solutions of probabilities for occurrence of the pre-image motives;
3. Construct a differential equation of the target pattern based on the pre-image motives;

and finally
4. Solve the differential equation.

As an example how the program works we will now calculate the probability of the occur-
rence of Yt = (0,1,0,1)′

t , meaning the probability that the first and third layer are occupied
and the second and fourth layer are empty. That the procedure stops after finitely many steps
is not obvious from the beginning. Responsible for this fact is the screening. This will be-
come clear in the example below. In a model without screening like [3] it is not true, and a
corresponding recursion produces an infinite number of local motives.

2.4.1 Step 1: Find the Pre-Image Motives

In this step we have to find the patterns whose occurrences contribute to an increase or
decrease of our target pattern. In the case of Yt = (0,1,0,1)′

t we find four pre-image motives,
i.e.

A1 =
⎛

⎝
× × ×
1 0 ×
0 1 0

⎞

⎠ , A2 =
⎛

⎝
× × ×
1 0 1
0 1 0

⎞

⎠ ,

(2.37)

A3 =

⎛

⎜⎜⎝

× × ×
0 1 0
1 0 0
0 1 0

⎞

⎟⎟⎠ , A4 =

⎛

⎜⎜⎝

× × ×
0 1 0
1 0 1
0 1 0

⎞

⎟⎟⎠

This notation indicates on which position and layer a particle has been deposited (1) and
where not (0), and where no particles have arrived so far (×). A particle is denoted by a 1
and empty positions that will remain empty due to blocking of neighbors or to the screening
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effect are indicated with a 0. Positions at and beyond which no particle has arrived so far are
indicated with a ×. Indeed, the proportion of the occurrences of Yt will increase with the
proportion of both A1 and A2. In both patterns a particle is able to be deposited on the third
layer and complete the pattern of Yt . The new particle can not be screened by particles in
higher layers. On the other hand, the occurrence of A3 or A4 may lead to a decrease of Yt ,
because they allow the arrival of a particle in the center location which results in (1,1,0,1)′.
There are no other motives that can directly influence the proportion of Yt .

2.4.2 Step 2: Obtain the Solutions of the Pre-Image Motives

In this step we treat the pre-image motives one-by-one and find their solutions using the
same four-step procedure again. First we look at A1 and detect its pre-image motives.

Finding A1

We apply the same procedure to find A1. With an abuse of notation we write A1(t) for the
probability of its occurrence.

Step 1′: The pre-image motives of A1 are:

B1 =
⎛

⎝
× × × ×
× × × ×
× 0 1 0

⎞

⎠ , B2 =
⎛

⎝
× × × ×
× × × ×
1 0 1 0

⎞

⎠ , A1 =
⎛

⎝
× × ×
1 0 ×
0 1 0

⎞

⎠ (2.38)

Step 2′: Solutions of the pre-image motives of A1

B1(t) = te−4t (2.39)

B2(t) = te−3tPt (Nt (1) = 0,mt (1) = 1|Nt(0) = 0)

= S2
t te

−3t

= te−4t − te−5t (2.40)

where we used our earlier result for Sd
t in (2.17).

Step 3′: The differential equation for A1(t) takes the form

Ȧ1(t) = B1(t) + B2(t) − 3A1(t)

= 2te−4t − te−5t − 3A1(t) (2.41)

Step 4′: Solution of A1(t)

Together with A1(0) = 0 we find

A1(t) = 7

4
e−3t − 2e−4t − 2te−4t + 1

4
e−5t + 1

2
te−5t (2.42)

Finding A2

We apply the same steps to get A2.
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Step 1′: The pre-image motives of A2 are

C1(t) =
⎛

⎝
× × × ×
× × 0 1
× 0 1 0

⎞

⎠ , C2(t) =
⎛

⎝
× × × ×
× × 0 1
1 0 1 0

⎞

⎠ , A2(t) =
⎛

⎝
× × ×
1 0 1
0 1 0

⎞

⎠ (2.43)

Step 2′: Now we solve C1(t) and C2(t). We find

C1(t) =
⎛

⎝
× × × ×
× × 0 1
× 0 1 0

⎞

⎠ = Ute
−2t .

With Ut := Pt(Nt (1) = 1,mt (1) = 1,Nt (2) = 1,mt (2) = 2|Nt(0) = 0). Now, we have to
solve Ut first.

U̇t = −2Ut + Pt(Nt (1) = 1,Nt (2) = 0,Nt (3) = 0|Nt(0) = 0)

+ Pt(Nt (1) = 1,Nt (2) = 0,Nt (3) = 1,mt (3) = 1|Nt(0) = 0)

= −2Ut + te−3t

+ Pt(Nt (1) = 1,Nt (3) = 1,mt (3) = 1|Nt(0) = 0,Nt (2) = 0)e−t

= −2Ut + te−3t + Pt(Nt (1) = 1|Nt(0) = 0,Nt (2) = 0)

× Pt(Nt (1) = 1,mt (1) = 1|Nt(0) = 0)e−t

= −2Ut + te−3t + te−t S2
t e

−t

= −2Ut + te−3t + te−2t (e−t − e−2t )

= −2Ut + 2te−3t − te−4t (2.44)

So, we have to solve

U̇t + 2Ut = 2te−3t − te−4t .

The homogeneous solution is Ut,hom = Ce−2t , and a particular solution is Ut,part =
−2te−3t − 2e−3t + 1

2 te−4t + 1
4 e−4t . For t = 0 we have U0 = 0. So, this gives the general

solution

Ut = 7

4
e−2t − 2te−3t − 2e−3t + 1

2
te−4t + 1

4
e−4t .

Therefore, we have C1(t) = Ute
−2t = 1 3

4e−4t − 2te−5t − 2e−5t + 1
2 te−6t + 1

4e−6t . Now, we
treat C2(t). We find

C2(t) =
⎛

⎝
× × × ×
× × 0 1
1 0 1 0

⎞

⎠ = UtS
2
t e

−t (2.45)

So,

C2(t) =
(

1
3

4
e−2t − 2te−3t − 2e−3t + 1

2
te−4t + 1

4
e−4t

)
(e−t − e−2t )e−t (2.46)
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Step 3′:

Ȧ2(t) = 2C1(t) + 2C2(t) − 3A2(t)

= 7e−4t − 11
1

2
e−5t − 8te−5t + 5e−6t + 6te−6t − 1

2
e−7t − te−7t − 3A2(t) (2.47)

Step 4′: So

Ah
2(t) = Ce−3t

and

A
p

2 (t) = −7e−4t + 31

4
e−5t + 4te−5t − 7

3
e−6t − 2te−6t + 3

16
e−7t + 1

4
te−7t

and the general solution becomes

A2(t) = 67

48
e−3t − 7e−4t + 31

4
e−5t + 4te−5t − 7

3
e−6t − 2te−6t + 3

16
e−7t + 1

4
te−7t (2.48)

Finding A3 and A4

The last two motives are much less complicated compared with the former two, so we can
treat them together at the same time.

Step 1′: The motives of A3 are A1 and A3 itself, whereas the motives of A4 are A2 and A4.
Step 2′: We already solved A1 and A2 above.
Step 3′: The differential equations that we need to solve are

Ȧ3(t) = A(t) − 3A3(t) and Ȧ4(t) = A2(t) − 3A4(t) (2.49)

respectively.
Step 4′: With the following solutions

A3(t) = −15

4
e−3t + 7

4
te−3t + 4e−4t + 2te−4t − 1

4
e−5t − 1

4
te−5t (2.50)

and

A4(t) = −49

16
e−3t + 67

48
te−3t + 7e−4t − 39

8
e−5t − 2te−5t

+ e−6t + 2

3
te−6t − 1

16
e−7t − 1

16
te−7t (2.51)

2.4.3 Step 3: Construct a Differential Equation

The differential equation for Yt is

Ẏt = 2A1(t) + A2(t) − 2A3(t) − A4(t) (2.52)

Indeed, the appearance of Yt can increase by A1(t) and by its mirror motive. So, it counts
two times. Also A2(t) increases the proportion of Yt but only one time, because its pattern
is symmetric. Decrease of Yt occurs when a particle parks on top of A3(t) or A4(t) where
the former counts two times because its mirror pattern has the same effect.
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Fig. 4 Time development of the occurrence probability of Yt = (0,1,0,1)′t

2.4.4 Step 4: Solve the Differential Equation

After some calculations we find, using Y0 = 0:

Pt

⎛

⎜⎜⎝

0
1
0
1

⎞

⎟⎟⎠ = 34

735
− 1991

432
e−3t + 235

144
te−3t + 7e−4t + 2te−4t − 121

40
e−5t − 3

2
te−5t

+ 17

27
e−6t + 4

9
te−6t − 33

784
e−7t − 5

112
te−7t (2.53)

Figure 4 depicts the time development of Y (t).
It should be clear that the probabilities of any other pattern can be computed in a similar

way.

2.5 Comparison Results

Let us now come back to the behavior on the first two layers and conclude the paper with a
discussion of comparison statements for densities.

Theorem 3 Consider a regular tree Td . The limiting density in the first layer is higher than
in the second layer for all d ≥ 2.

Proof Let us denote βk(d) := (d/(d − 1))d
(
d

k

)
d−k

(d−1)k+d+1 , so ρd∞(2) = ∑d

k=0(−1)kβk(d) −
d

(d+1)2 . One verifies that βk+1(d)/βk(d) < 1 so that k �→ βk(d) is decreasing. Therefore,

making use of the alternating nature of the sum, we have the bound limt→∞ ρd
t (2) < β0(d)−

β1(d) + β2(d) − d/(d + 1)2. The proof is then concluded by seeing that β0(d) − β1(d) +
β2(d) < (2d +1)/(d +1)2 for all d ≥ 2. After some algebraic manipulations we find β0(d)−
β1(d) + β2(d) = (d/(d − 1))d 2(d−1)

(d+1)(3d−1)
. So, we have to check that (d/(d − 1))d 2(d−1)

3d−1 <
2d+1
d+1 or equivalently (1 − 1

d
)d > 2(d−1)(d+1)

(3d−1)(2d+1)
. Developing the left term into a series and

truncating it, we also find that (1 − 1
d
)d ≥ d−1

2d
− (d−1)(d−2)

6d2 = 2(d−1)(d+1)

6d2 . Equality holds

only in the cases of d = 2 and d = 3. Furthermore, it is clear that 2(d−1)(d+1)

6d2 > 2(d−1)(d+1)

(3d−1)(2d+1)
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for d ≥ 2. So, finally, by checking the cases d = 2 and d = 3 directly we conclude that the
density of the second layer is strictly dominated by the first layer density for all d ≥ 2. �

In [6] the issue of comparing the behavior of the process on a regular tree with that on a
random tree having the same number of nearest neighbors on the average was raised, and a
number of results were given. In our situation, we have the following.

Theorem 4 Consider the random trees S and T with probability generating functions GS

and GT respectively. If GS(s) > GT (s), for all 0 < s < 1 then the first layer density of S

exceeds the first layer density of T for all t > 0.
In particular, the first layer density of the regular tree Td ′ dominates the first layer density

of the regular tree Td for all t > 0 if d ′ < d .

Proof According to Theorem 2 the density of the first layer on a random tree S with prob-
ability generating function G(s) = ∑∞

n=2 ans
n is given by QρS

t (1) = ∑∞
k=2 ak

1−e−(k+1)t

k+1 . De-

fine γ (t) := QρS
t (1) − QρT

t (1) = ∑∞
k=2(ak − bk)(

1−e−(k+1)t

k+1 ).We have γ (0) = 0. In case of
GS(s) > GT (s), the time derivative of γ (t) becomes d

dt
γ (t) = ∑∞

k=2(ak − bk)e
−(k+1)t =

e−t (GS(e
−t ) − GT (e−t )) > 0 for all t > 0. �

Corollary 1 Consider a regular tree Td with d neighbors for each vertex, with d ∈
{2,3,4, . . . }. If random tree S has an average number of d vertex neighbors, then for any
t > 0, the density of the first layer on S is higher than on Td .

Proof Consider Td with generating function GT (s) = sd and random tree S with average
vertex neighbors EX = d . From Jensen’s inequality it follows that GS(s) = E(sX) > sEX =
sd = GT (s), because f (z) = az, (a > 0) is a convex function. Application of Theorem 4
completes the proof. �
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